AI in Edge Computing: Bringing Intelligence Closer to Devices

AI at the edge allows real-time decision-making on devices like smartphones and cameras.

This reduces latency and reliance on cloud computing.

Example: Running AI Inference on a Raspberry Pi

import tflite_runtime.interpreter as tflite

interpreter = tflite.Interpreter(model_path="model.tflite")
interpreter.allocate_tensors()

input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

print("Model ready for inference on edge devices")


This script loads a TensorFlow Lite model for edge computing.